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A Locally Conformal Finite-Difference
Time-Domain (FDTD) Algorithm for Modeling

Three-Dimensional Perfectly Conducting Objects
Supriyo Dey and Raj Mittra

Abstract— A novel conformal finite-difference time-domain
(CFDTD) technique for locally distorted contours that accurately
model curved metallic objects is presented in this paper. This
approach is easy to implement and is numerically stable. Several
examples are presented to demonstrate that the new method
yields results that are far more accurate than those generated
by the conventional staircasing approach. Example geometries
include cylindrical and spherical cavities, and a circular mi-
crostrip patch antenna. Accuracy of the scheme is demonstrated
by comparing the results derived from analytical and Method of
Moments (MoM) techniques.

Index Terms—Finite-difference time-domain (FDTD), locally
conformal grid, Maxwell solver.

I. INTRODUCTION

T HE staircasing approach to analyzing objects with curved
metallic surfaces using the Yee algorithm [1] not only

introduces errors [2] due to inaccurate approximation of the
geometry, but can also generate spurious solutions. Several
techniques have been proposed in the literature for overcoming
these difficulties. These include the globally curvilinear grid
technique [3], which requires a special structured type of mesh
that may be difficult to generate when modeling an arbitrary
shaped object, and the contour path finite-difference time-
domain (CPFDTD) scheme [4] that deforms the grid only
locally to accommodate the curvature of the surface. Although
simple and efficient, CPFDTD frequently leads to instabilities
because of noncausal and nonreciprocalnearest neighbor
approximation [5], [6]. Various modifications in the CPFDTD
algorithm have been proposed in the literature to obviate this
instability problem [7], [8]; however, the bookkeeping, mesh
generation, and programming are considerably more complex
in these schemes than they are in the conventional FDTD
algorithm.

In a recent communication, the present authors have re-
ported a simple yet accurate technique for the FDTD analysis
of curved two-dimensional (2-D) perfectly conducting bodies
[9] using a locally conformal grid. In this paper, we extend
this technique to three-dimensional cases and illustrate its
application by investigating a number of test geometries.
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Fig. 1. Cross-sectional view of the quarter of the spherical cavity.

II. CONFORMAL FINITE-DIFFERENCE

TIME-DOMAIN (CFDTD) ALGORITHM

Consider the cross section of a spherical cavity resonator
shown in Fig. 1, where, for convenience, we display only
one of its quadrants. The mesh for this structure is depicted
by the solid dark lines in the figure, which also shows an
overlay of a uniform Cartesian mesh. The undistorted cells
are treated in the usual way in the CFDTD algorithm, for
both the - and -fields. For the distorted cells, no special
treatment is needed for the electric field, which is assumed
to be constant along the edge of a cell that resides within
the cavity, and zero if it is located on the metallic surface
or within the conductor. However, the treatment of the-
field is somewhat different. It is assumed to be located at
the center of the correspondingundistortedcell (the Cartesian
cell obtained by removing the partial filling) for the purpose
of numerical calculations, irrespective of whether the location
of the center is inside or outside the computational domain.
It is also assumed to be constant over the region of the cell
that is inside the cavity. Thus, the updating procedure of the

-field is changed little from the conventional FDTD scheme.
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We now offer a possible justification for the fact that we
always locate the -field at the center of the cell, regardless
of whether it is partially filled or not. We begin with the
observation that, conventionally, the updating of the magnetic
field in a regular cell is carried out by summing up the
contributions of the electric fields tangential to the boundaries
of the cell. Next, we consider the case where the cell is
partially filled with a lossy material. It may be verified that
the updating of the -field as well as its location remains
unchanged with the introduction of this modification, and this
is the basis of our argument for following the procedure for
time-stepping of the -field that we have presented above.
However, it is also obvious that the electric field in the region
interior to the conducting medium becomes negligible in the
limit of a perfectly conducting filling, and, hence, we need
only retain the contributions of the-field on the portions of
the cell contour that are outside of the conducting region.

The above procedure enable us to employ the regular FDTD
equations to update the magnetic field by using the electric
field values along the distorted contour that are appropriately
weighted with the lengths of the contours. The updating
equation for the -field along the -direction reads

(1)

where and are the cell lengths along the and
directions, respectively.

Once the -fields have been computed, the-fields are
updated in the conventional manner by using the adjacent

-field values. For example, the updated-field along the
-direction is derived from

(2)

where, and are the step size alongand directions.
Since all the field values are updated withoutborrowing

from any of the adjacent cells, as is done in CPFDTD,
the associated stability problems are no longer present in
this scheme. However, the stability of this algorithm is still
governed by the nature of the mesh and the choice of the time
step. Numerical experiments have shown that a time step of 50
to 70% of the Courant limit associated with theundistortedcell
is adequate to ensure the stability of the algorithm, provided
that the following conditions are met.

1) The area of the distorted cell (partially filled) is greater
than 1.5% (for 50% of Courant limit) and 2.5% (for
70% of limit) of the area of the undistorted cell area.

Fig. 2. Resonant frequencies of cylindrical cavities calculated using various
methods.

2) The ratio between the maximum length of the side of
a cell and its area is less than 15 (for 50% of Courant
limit) and 10 (for 70% of limit).

Finally, if desired, the CPFDTD scheme can be used to
supplement the CFDTD algorithm to deal with the cells in
which the above conditions are violated.

III. N UMERICAL RESULTS

To demonstrate both the accuracy and stability of the pro-
posed approach, we have calculated the resonant frequencies
of the dominant TE and TM modes of cylindrical cavities and
the two lowest order resonant frequencies of spherical cavities.
The usefulness of the approach has been further demonstrated
by computing the resonant frequency of a circular microstrip
patch antenna. All of these results were obtained by using 8192
time steps. Additional runs were carried out with up to 16 000
time steps and no instability was ever observed.

A. Cylindrical Cavity

The proposed algorithm was employed to calculate the
resonant frequencies of the dominant TE and TM modes
for circularly cylindrical cavities, with heights of 30 cm and
radii ranging from 18 to 26 cm. In each case, the spatial
discretization was chosen to be 3 cm. The results are shown
in Fig. 2 and are compared with those obtained by using the
staircase approximation, as well as with the analytical results.
In the above figure, the legend CFDTD refers to the present
conformal FDTD method. The worst case and the average error
due to staircasing is 8.45% and 3.76%, respectively, while the
corresponding figure for the present scheme is only 0.3% and
0.14%.

B. Spherical Cavity

To demonstrate the full three-dimensional capability of the
algorithm, two lowest order resonant frequencies of the spher-
ical cavity have been computed. Calculations were carried out
for spheres with radii ranging from 14 to 24 cm by using
a spatial discretization of 4 cm in size. It is evident that
this choice of the discretization leads to a relatively coarse
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Fig. 3. Resonant frequencies of spherical cavities calculated using various
methods.

mesh and, hence, provides a stringent test for the algorithm.
Fig. 3 shows the comparison between the resonant frequencies
predicted by the present technique, the analytical results, and
those derived by using the conventional staircasing approach.
It can be seen that accurate results are obtained with the
CFDTD method even with the relatively course mesh that has
been employed. The worst and average staircasing errors are
12.96% and 4.8%, respectively, while the same for the present
scheme are only 1.14% and 0.69%, respectively.

C. Circular Microstrip Patch

The last example considered was a probe-fed circular mi-
crostrip patch antenna with the following parameters: dielectric
constant 4.0, thickness 4.0 mm, and radius 10 mm. The cell
size along the thickness of the substrate was 0.8 mm while it
was 2.5 mm along the other two directions. The fundamental
resonant frequency of the patch obtained by using the present
method, the staircased FDTD and the MoM were, 3.75, 3.68,
and 3.80 GHz, respectively. The CFDTD result is 1.31% lower
than the one predicted by MoM, whereas the one computed
by using the staircased FDTD algorithm is 3.16% lower.
The difference between the CFDTD and MoM results for the
resonant frequency can be attributed to the fact that the radius
of the feed probe modeled with the MoM is finite, whereas it
is assumed to be infinitesimal in the FDTD simulation.

IV. CONCLUSION

In this paper, we have shown that a simple accurate stable
and locally conformal FDTD algorithm, previously developed
for the 2-D case, can be successfully extended to three-
dimensional geometries. The scheme has been found to be
numerically stable, because the problem associated with bor-
rowing from adjacent cell, as for instance in CPFDTD, is
not present here. Furthermore, the algorithm generates no
spurious solutions and yields results that are considerably more
accurate than those obtained by using the staircasing approach.
There are several attractive features of this algorithm: first, the
bookkeeping involved is relatively simple compared to those
required in other explicit nonorthogonal FDTD schemes. Sec-
ond, an automatic mesh generation procedure can be utilized
in conjunction with this algorithm because the specifications
for the mesh are not very demanding. Finally, the allowable
time step for stable calculations can be much higher (order
of magnitude) than dictated by the smallest-size distorted cell,
and this can result in a considerable saving of the computation
time.
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