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A Locally Conformal Finite-Difference
Time-Domain (FDTD) Algorithm for Modeling
Three-Dimensional Perfectly Conducting Objects

Supriyo Dey and Raj Mittra

Abstract—A novel conformal finite-difference time-domain Iy
(CFDTD) technique for locally distorted contours that accurately Y
model curved metallic objects is presented in this paper. This
approach is easy to implement and is numerically stable. Several
examples are presented to demonstrate that the new method
yields results that are far more accurate than those generated
by the conventional staircasing approach. Example geometries
include cylindrical and spherical cavities, and a circular mi- [ —
crostrip patch antenna. Accuracy of the scheme is demonstrated /
by comparing the results derived from analytical and Method of o o L e
Moments (MoM) techniques. /

Index Terms—Finite-difference time-domain (FDTD), locally / i
conformal grid, Maxwell solver. o ./ o | e A o
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I. INTRODUCTION

Y
Y
Y

HE staircasing approach to analyzing objects with curved o o Ey\y o W ) ®
metallic surfaces using the Yee algorithm [1] not only
introduces errors [2] due to inaccurate approximation of thja / ™

Y
Y

geometry, but can also generate spurious solutions. Seve
techniques have been proposed in the literature for overcomify
these difficulties. These include the globally curvilinear gridﬁ‘
technique [3], which requires a special structured type of mesh —ax—

that may be difficult to generate when modeling an arbitrar . . . .
shaped object, and the contour path finite-difference timelg' 1. Cross-sectional view of the quarter of the spherical cavity.
domain (CPFDTD) scheme [4] that deforms the grid only
locally to accommodate the curvature of the surface. Although IIl. CONFORMAL FINITE-DIFFERENCE
simple and efficient, CPFDTD frequently leads to instabilities TIME-DOMAIN (CFDTD) ALGORITHM

because of noncausal and nonreciprooahrest neighbor — congider the cross section of a spherical cavity resonator
approximation [5], [6]. Various modifications in the CPFDTDgpown in Fig. 1, where, for convenience, we display only
algorithm have been proposed in the literature to obviate thifie of jts quadrants. The mesh for this structure is depicted
instability problem [7], [8]; however, the bookkeeping, mesBy, the solid dark lines in the figure, which also shows an
generation, and programming are considerably more comp|&¥riay of a uniform Cartesian mesh. The undistorted cells
in thgse schemes than they are in the conventional FDTD, teated in the usual way in the CFDTD algorithm, for
algorithm. o both the E- and H-fields. For the distorted cells, no special
In a recent communication, the present authors have fgsatment is needed for the electric field, which is assumed
ported a simple yet accurate technique for the FDTD analys e constant along the edge of a cell that resides within
of curved two-dimensional (2-D) perfectly conducting bodieg,e cavity, and zero if it is located on the metallic surface
[9] using a locally conformal grid. In this paper, we extend. iin the conductor. However, the treatment of tHe
this technique to three-dimensional cases and illustrate #Si4 is somewhat different. It is assumed to be located at
application by investigating a number of test geometries. he center of the correspondingdistortedcell (the Cartesian
cell obtained by removing the partial filling) for the purpose
of numerical calculations, irrespective of whether the location
of the center is inside or outside the computational domain.
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We now offer a possible justification for the fact that we ——— TM010 Analytical
always locate thet-field at the center of the cell, regardless g 7o0! . A dp AL
of Wheth_er it is partially_filled or not. We begin with the_ (ID ——\\\ T IR pnaal
observation that, conventionally, the updating of the magnetic 7 650 VT -~ - TEi11 Staricase

field in a regular cell is carried out by summing up the 2

contributions of the electric fields tangential to the boundaries g
of the cell. Next, we consider the case where the cell is 93-550,
partially filled with a lossy material. It may be verified that
the updating of theH-field as well as its location remains

L

S 500 ¢
unchanged with the introduction of this modification, and this §

o

450

is the basis of our argument for following the procedure for
time-stepping of theH-field that we have presented above. 400
However, it is also obvious that the electric field in the region
interior to the conducting medium becomes negligible in the

limit of a perfectly conducting filling, and, hence, we neegig. 2. Resonant frequencies of cylindrical cavities calculated using various
only retain the contributions of th&-field on the portions of methods.

the cell contour that are outside of the conducting region.

The above procedure enable us to employ the regular FDTD 2) The ratio between the maximum length of the side of

equations to update the magnetic field by using the electric a cell and its area is less than 15 (for 50% of Courant
field values along the distorted contour that are appropriately limit) and 10 (for 70% of limit)

weighted with the lengths of the contours. The updating
equation for theH-field along thez-direction reads

18 19 20 21 22 23 24 25 26 27
radius {(cm)

Finally, if desired, the CPFDTD scheme can be used to
supplement the CFDTD algorithm to deal with the cells in

which the above conditions are violated.
12, k) = B2, )+ e
e x Areal(t, 4, k)

x {E2(i, 4, k) * (3,5, k) — EZ(i,5 — 1,k) [ll. NUMERICAL RESULTS

w1 (4,5 — 1, k) — B (4,4, k) * 1, (4, 4, k) To demonstrate both the accuracy and stability of the pro-

FEMi—1,4,k) x (i — 1,5 k)} 1) posed approach, we have calculated the resonant frequencies
Yy 1J Yy 1J .

of the dominant TE and TM modes of cylindrical cavities and

the two lowest order resonant frequencies of spherical cavities.

directions, respectively. The usefulness of the approach has been further demonstrated
by computing the resonant frequency of a circular microstrip

Once the H-fields have been computed, thefields are : )
updated in the conventional manner by using the adjacé)r?ttCh antenna. All of these results were obtained by using 8192

H-field values. For example, the updatéifield along the t!me steps. Addition_al runs were carried out with up to 16 000
s-direction is derived from time steps and no instability was ever observed.

where [, and [, are the cell lengths along the and y

Ent(i 4, k) A. Cylindrical Cavity
= E2(i,5,k) The proposed algorithm was employed to calculate the
At 12, 12, resonant frequencies of the dominant TE and TM modes
e x Ay {H* 126§ + 1, k) = HIFY2(i, g, k)} for circularly cylindrical cavities, with heights of 30 cm and
At radii ranging from 18 to 26 cm. In each case, the spatial

{Hy P2+ 1,5,k) — HptY2(i, 5, k) } discretization was chosen to be 3 cm. The results are shown
) in Fig. 2 and are compared with those obtained by using the
staircase approximation, as well as with the analytical results.
where, Ay and A~ are the step size alongand z directions. In the above figure, the legend CFDTD refers to the present
Since all the field values are updated withdadrrowing conformaI.FDT.D method. The worst case and thg average error
from any of the adjacent cells, as is done in CPFDTIﬁj,ue to stawpasn_wg is 8.45% and 3.76%, respe_ctlvely, while the
the associated stability problems are no longer present GAresponding figure for the present scheme is only 0.3% and
this scheme. However, the stability of this algorithm is stif-14%.
governed by the nature of the mesh and the choice of the time
step. Numerical experiments have shown that a time step of BoSpherical Cavity

£ X Az

to 70% of the Courant limit associated with thedistortedcell To demonstrate the full three-dimensional capability of the
is adequate to ensure the stability of the algorithm, providegyorithm, two lowest order resonant frequencies of the spher-
that the following conditions are met. ical cavity have been computed. Calculations were carried out

1) The area of the distorted cell (partially filled) is greatefior spheres with radii ranging from 14 to 24 cm by using
than 1.5% (for 50% of Courant limit) and 2.5% (fora spatial discretization of 4 cm in size. It is evident that
70% of limit) of the area of the undistorted cell area.this choice of the discretization leads to a relatively coarse
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—— 1st Resonance Analytical IV CONCLUS|ON
------- 1st resonance CFDTD ) )
137 S - Ist Resonance staircase In this paper, we have shown that a simple accurate stable
. 2nd Resonance Analytical ) .
12+ S ——- 2nd Resonance GFDTD and locally conformal FDTD algorithm, previously developed
~N \\ —-+—- 2nd Resonance Staircase
11 for the 2-D case, can be successfully extended to three-
S0 dimensional geometries. The scheme has been found to be
B o9 numerically stable, because the problem associated with bor-
S 08 rowing from adjacent cell, as for instance in CPFDTD, is
?-)— : not present here. Furthermore, the algorithm generates no
& 077 spurious solutions and yields results that are considerably more
0.6 accurate than those obtained by using the staircasing approach.
0.5 ¢ There are several attractive features of this algorithm: first, the

bookkeeping involved is relatively simple compared to those

required in other explicit nonorthogonal FDTD schemes. Sec-

ond, an automatic mesh generation procedure can be utilized
Fig. 3. Resonant frequencies of spherical cavities calculated using varignsconjunction with this algorithm because the specifications

methods. for the mesh are not very demanding. Finally, the allowable

time step for stable calculations can be much higheof{der

mesh and, hence, provides a stringent test for the algorith%.magnitUde) than_dictated _by the smaII_est-size distorted C?”’
Fig. 3 shows the comparison between the resonant frequen&@g this can result in a considerable saving of the computation

predicted by the present technique, the analytical results, dige:
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C. Circular Microstrip Patch
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constant 4.0, thickness 4.0 mm, and radius 10 mm. The cégfl
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is assumed to be infinitesimal in the FDTD simulation.
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